Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38063715

ABSTRACT

This study was carried out in order to assess several modifications of carbon nanotube-based nanomaterials for their applications in laccase electrodes and model biofuel cells. The modified MWCNTs served as adapters for the immobilization of laccase from Catenuloplanes japonicus VKM Ac-875 on the surface of electrodes made of graphite rods and graphite paste. The electrochemical properties of the electrodes were tested in linear and cyclic voltammetrical measurements for the determination of the redox potential of the enzyme and achievable current densities. The redox potential of the enzyme was above 500 mV versus NHE, while the highest current densities reached hundreds of µA/cm2. Model biofuel cells on the base of the laccase cathodes had maximal power values from 0.4 to 2 µW. The possibility of practical application of such BFCs was discussed.

2.
PeerJ ; 11: e14769, 2023.
Article in English | MEDLINE | ID: mdl-36743963

ABSTRACT

Novel peripheral light-harvesting (LH) complex designated as LL LH2 was isolated along with LH4 complex from Rhodopseudomonas palustris cells grown under low light intensity (LL). FPLC-MS/MS allowed to reveal PucABd and PucBabc apoproteins in LL LH2 complex, which is different from previously described LH4 complex containing PucABd, PucABa and PucBb. The main carotenoids in LL LH2 complex were rhodopin and 3,4-didehydrorhodopin. Three-dimensional modeling demonstrated which amino acid residues of all the ß-subunits could interact with carotenoids (Car) and bacteriochlorophyll a (BChl a). Analysis of amino acid sequences of α-subunits of both LL complexes showed presence of different C-terminal motifs, IESSVNVG in αa subunit and IESSIKAV in αd subunit, in the same positions of C-termini, which could reflect different retention force of LL LH2 and LH4 on hydroxyl apatite, facilitating successful isolation of these complexes. Differences of these LL complexes in protein and carotenoid composition, in efficiency of energy transfer from Car to BChl a, which is two times lower in LL LH2 than in LH4, allow to assign it to a novel type of light-harvesting complex in Rhodopseudomonas palustris.


Subject(s)
Lighting , Tandem Mass Spectrometry , Light-Harvesting Protein Complexes/metabolism , Carotenoids/metabolism
3.
Int J Mol Sci ; 23(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36142248

ABSTRACT

(Ca2+)-dependent pyrroloquinolinequinone (PQQ)-dependent methanol dehydrogenase (MDH) (EC: 1.1.2.7) is one of the key enzymes of primary C1-compound metabolism in methylotrophy. PQQ-MDH is a promising catalyst for electrochemical biosensors and biofuel cells. However, the large-scale use of PQQ-MDH in bioelectrocatalysis is not possible due to the low yield of the native enzyme. Homologously overexpressed MDH was obtained from methylotrophic bacterium Methylorubrum extorquens AM1 by cloning the gene of only one subunit, mxaF. The His-tagged enzyme was easily purified by immobilized metal ion affinity chromatography (36% yield). A multimeric form (α6ß6) of recombinant PQQ-MDH possessing enzymatic activity (0.54 U/mg) and high stability was demonstrated for the first time. pH-optimum of the purified protein was about 9-10; the enzyme was activated by ammonium ions. It had the highest affinity toward methanol (KM = 0.36 mM). The recombinant MDH was used for the fabrication of an amperometric biosensor. Its linear range for methanol concentrations was 0.002-0.1 mM, the detection limit was 0.7 µM. The properties of the invented biosensor are competitive to the analogs, meaning that this enzyme is a promising catalyst for industrial methanol biosensors. The developed simplified technology for PQQ-MDH production opens up new opportunities for the development of bioelectrocatalytic systems.


Subject(s)
Ammonium Compounds , Methylobacterium extorquens , Alcohol Oxidoreductases/metabolism , Ions , Methanol/metabolism , Methylobacterium extorquens/genetics
4.
PeerJ ; 9: e11646, 2021.
Article in English | MEDLINE | ID: mdl-34221729

ABSTRACT

BACKGROUND: Two-domain laccases are copper-containing oxidases found in bacteria in the beginning of 2000ths. Two-domain laccases are known for their thermal stability, wide substrate specificity and, the most important of all, their resistance to so-called «strong inhibitors¼ of classical fungal laccases (azides, fluorides). Low redox potential was found to be specific for all the two-domain laccases, due to which these enzymes lost the researchers' interest as potentially applicable for various biotechnological purposes, such as bioremediation. Searching, obtaining and studying the properties of novel two-domain laccases will help to obtain an enzyme with high redox-potential allowing its practical application. METHODS: A gene encoding two-domain laccase was identified in Catenuloplanes japonicus genome, cloned and expressed in an Echerichia coli strain. The protein was purified to homogeneity by immobilized metal ion affinity chromatography. Its molecular properties were studied using electrophoresis in native and denaturing conditions. Physico-chemical properties, kinetic characteristics, substrate specificity and decolorization ability of laccase towards triphenylmethane dyes were measured spectrophotometrically. RESULTS: A novel two-domain recombinant laccase CjSL appeared to be a multimer with a subunit molecular mass of 37 kDa. It oxidized a wide range of phenolic substrates (ferulic acid, caffeic acid, hydroquinone, catechol, etc.) at alkaline pH, while oxidizing of non phenolic substrates (K4[Fe(CN)6], ABTS) was optimal at acidic pH. The UV-visible absorption spectrum of the purified enzyme was specific for all two-domain laccases with peak of absorption at 600 nm and shoulder at 340 nm. The pH optima of CjSL for oxidation of ABTS and 2, 6-DMP substrates were 3.6 and 9.2 respectively. The temperature optimum was 70 °C. The enzyme was most stable in neutral-alkaline conditions. CjSL retained 53% activity after pre-incubation at 90 °C for 60 min. The enzyme retained 26% activity even after 60 min of boiling. The effects of NaF, NaN3, NaCl, EDTA and 1,10-phenanthroline on enzymatic activity were investigated. Only 1,10-phenanthroline reduced laccase activity under both acidic and alkaline conditions. Laccase was able to decolorize triphenylmethane dyes and azo-dyes. ABTS and syringaldehyde were effective mediators for decolorization. The efficacy of dye decolorization depended on pH of the reaction medium.

5.
Int J Mol Sci ; 21(1)2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31935912

ABSTRACT

Three-dimensional structures of six closely related hydrogenases from purple bacteria were modeled by combining the template-based and ab initio modeling approach. The results led to the conclusion that there should be a 4Fe3S cluster in the structure of these enzymes. Thus, these hydrogenases could draw interest for exploring their oxygen tolerance and practical applicability in hydrogen fuel cells. Analysis of the 4Fe3S cluster's microenvironment showed intragroup heterogeneity. A possible function of the C-terminal part of the small subunit in membrane binding is discussed. Comparison of the built models with existing hydrogenases of the same subgroup (membrane-bound oxygen-tolerant hydrogenases) was carried out. Analysis of intramolecular interactions in the large subunits showed statistically reliable differences in the number of hydrophobic interactions and ionic interactions. Molecular tunnels were mapped in the models and compared with structures from the PDB. Protein-protein docking showed that these enzymes could exchange electrons in an oligomeric state, which is important for oxygen-tolerant hydrogenases. Molecular docking with model electrode compounds showed mostly the same results as with hydrogenases from E. coli, H. marinus, R. eutropha, and S. enterica; some interesting results were shown in case of HupSL from Rba. sphaeroides and Rvi. gelatinosus.


Subject(s)
Bacterial Proteins/chemistry , Hydrogenase/chemistry , Molecular Dynamics Simulation , Proteobacteria/enzymology , Sequence Homology, Amino Acid , Industrial Microbiology , Protein Conformation , Proteobacteria/classification , Proteobacteria/genetics
6.
Int J Mol Sci ; 20(20)2019 Oct 20.
Article in English | MEDLINE | ID: mdl-31635169

ABSTRACT

The nature of renal amyloidosis involving Bence-Jones proteins in multiple myeloma is still unclear. The development of amyloidosis in neurodegenerative diseases is often associated with a high content of asparagine and glutamine residues in proteins forming amyloid deposits. To estimate the influence of Asn and Gln residues on the aggregation of Bence-Jones protein BIF, we obtained recombinant BIF and its mutants with the substitution of Tyr187→Asn (Y187N) in α-helix of CL domain, Lys170→Asn (K170N) and Ser157→Gln (S157Q) in CL domain loops, Arg109→Asn in VL-CL linker (R109N) and Asp29→Gln in VL domain loop (D29Q). The morphology of protein aggregates was studied at pH corresponding to the conditions in bloodstream (pH 7.2), distal (pH 6.5) and proximal renal tubules (pH 4.5) by atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS). The Lys170→Asn replacement almost completely inhibits amyloidogenic activity. The Y187N forms fibril-like aggregates at all pH values. The Arg109→Asn replacement resulted in formation of fibril-like structures at pH 7.2 and 6.5 while the substitutions by Gln provoked formation of those structures only at pH 7.2. Therefore, the amyloidogenic properties are highly dependent on the location of Asn or Gln.


Subject(s)
Asparagine/chemistry , Bence Jones Protein/chemistry , Glutamine/chemistry , Mutant Proteins/chemistry , Mutation , Protein Aggregates , Amino Acid Sequence , Amino Acid Substitution , Asparagine/genetics , Bence Jones Protein/genetics , Bence Jones Protein/metabolism , Glutamine/genetics , Humans , Mutagenesis, Site-Directed , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Conformation , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...